Мода и стиль. Красота и здоровье. Дом. Он и ты

Кто такой хаббл и что он сделал. Великие астрономы

Астронома Эдвина Хаббла называют «пионером далеких звезд». Его исследования спиральных туманностей подтвердили существование других галактик, отличных от нашей галактики Млечный Путь.

Биография

Э́двин Па́уэлл Хаббл, американский астроном, родился 20 ноября 1889 г. в городе Маршфилд, штат Миссури, в семье страхового управляющего. В школьные годы Эдвин Хаббл более интересовался спортом: легкой атлетикой, любительским боксом, а также рыбной ловлей.

Но во время учебы в Чикагском университете увлекся математикой, астрономией и философией. Продолжил образование в Королевском колледже при Оксфордском университете, где изучил юриспруденцию, а также испанский язык и литературу.

Первое время по возвращении в США он преподавал испанский язык, физику и математику в Старшей школе города Нью-Олбани, штате Индиана, а также тренировал волейбольную команду мальчиков, а затем вернулся к астрономии в Йеркской обсерватории при Чикагском университете, где и получил докторскую степень в 1917 году. Но началась Первая мировая война, и занятия астрономией были прерваны – Хаббла призвали в действующую армию, где он получил звание майора.

В 1919 году ему предложили гражданскую должность в Маунт-Вилсон обсерватории при институте Карнеги в штате Калифорния, неподалёку от города Пасадина, где он и проработал до самой смерти.

Во время Второй мировой войны Эдвин Хаббл служил в Армии США на Абердинском испытательном полигоне. За свою работу там он получил орден «Легион Почёта».

Незадолго до смерти Эдвина Хаббла гигантский 200-дюймовый (≈5.1-метровый) телескоп-рефлектор Паломарской обсерватории был закончен, и Эдвин Хаббл стал первым астрономом, который его использовал.

Умер в сентябре 1953 г.

Открытия и достижения Э. Хаббла в астрономии

Его труды положили начало современной внегалактической астрономии. В 1924 г. Хаббл при помощи телескопа с диаметром зеркала 260 см на обсерватории Маунт-Вилсон доказал, что Туманность Андромеды и некоторые другие туманности имеют звездное строение и находятся далеко за пределами Млечного Пути. То есть Хаббл установил , что наша Галактика – не единственная звездная система во Вселенной. В те времена Вселенную представляли как целиком и полностью состоящей только из единственной галактики Млечного Пути.

Используя телескоп Хукера в Маунт-Вилсон, Эдвин Хаббл идентифицировал цефеиды (класс пульсирующих переменных звёзд) в нескольких спиральных туманностях, включая Туманность Андромеды и Треугольник. Его наблюдения 1922-1923 гг. убедительно подтвердили, что эти туманности были слишком далеки, чтобы быть частью Млечного Пути, и являлись в действительности отдельными галактиками за пределами нашей собственной. Эта идея была оспорена очень многими учёными в астрономических кругах того времени. Но, вопреки оппозиции, Эдвин Хаббл, которому на ту пору было 35 лет, представил свои открытия в печатном виде на собрании Американского астрономического сообщества 1 января 1925 года. Эти открытия фундаментальным образом изменили научное видение Вселенной.

Хаббл исследовал множество туманностей, которые он сам назвал внегалактическими. Теперь их называют галактиками. Оказалось, что далеко не все галактики имеют спиральную форму. Многие из них имеют эллиптическую или неправильную формы. В 1925 г. Хаббл составил первую подробную классификацию галактик по их формам и другим особенностям .

Классификация галактик Хаббла (Последовательность галактик)

Эту классификацию Хаббл предложил в 1936 г. С тех пор предложены более подробные классификации, но классификация Хаббла всё ещё актуальна.

  • E0 -E7 - эллиптические галактики, имеют относительно равномерное распределение звёзд без явного ядра. Цифра показывает эксцентриситет: галактики E0 практически шарообразны, с увеличением номера развивается уплощение. Число показывает форму проекции на плоскость наблюдения, а не реальную форму галактики, которую трудно установить.
  • S0 - линзообразные галактики дискообразной формы с явно выраженным центральным балджем (выпуклостью), но без наблюдаемых рукавов.
  • Sa , Sb , Sc , Sd - спиральные галактики, состоящие из балджа и внешнего диска, содержащего рукава. Буква показывает, насколько плотно расположены рукава.
  • SBa , SBb , SBc , SBd - спиральные галактики с перемычкой, в которых центральный балдж пересекает яркий бар (перемычка), от которого отходят рукава.
  • Irr - неправильные галактики, которые не могут быть отнесены ни к одному из перечисленных классов. Галактики типа IrrI содержат остатки спиральной структуры, а IrrII имеют совершенно неправильную форму.

Сам Хаббл считал эту последовательность эволюционной. По его мнению, эволюция происходила от эллиптических к спиральным галактикам. С тех пор эллиптические галактики называют ранним классом, а спиральные - поздним.

Эдвин Хаббл открыл астероид 1373 Цинциннати в 1935 году.

Закон Хаббла

В 1929 г. Хаббл обнаружил, что между лучевыми скоростями движения галактик и расстояниями до них существует линейная зависимость (закон Хаббла ). Хаббл определил численное значение коэффициента этой зависимости (постоянная Хаббла ). Это открытие стало наблюдательной основой теории расширяющейся Вселенной.

Расширение Вселенной - явление, состоящее в почти однородном и изотропном (одинаковость физических свойств во всех направлениях) расширении космического пространства в масштабах всей Вселенной. Экспериментально расширение Вселенной наблюдается в виде выполнения закона Хаббла. Началом расширения Вселенной наука считает так называемый Большой взрыв . Теоретически явление было предсказано и обосновано А. Фридманом на раннем этапе разработки общей теорией относительности из общефилософских соображений об однородности и изотропности Вселенной.

Закон Хаббла согласуется с решениями Эйнштейновских уравнений общей теории относительности для гомогенных изотропных расширяющихся пространств. Хотя основные концепции, лежащие в основе теории расширяющейся Вселенной, были хорошо известны и понятны и ранее, это утверждение, сделанное Эдвином Хабблом и Милтоном Хьюмасоном, привело к широкому признанию этой точки зрения, которая утверждает, что чем больше расстояние между какими-либо двумя галактиками, тем выше скорость их взаимного удаления (то есть тем быстрее они разлетаются друг от друга).

Ранее, в 1917 году, Альберт Эйнштейн обнаружил, что его только что разработанная Общая теория относительности указывает на то, что Вселенная должна либо расширяться, либо сжиматься. Будучи не в состоянии поверить в то, что его собственные уравнения говорили ему, Альберт Эйнштейн ввёл в свои уравнения «космологическую постоянную» (которая, по сути, являлась искусственно введенным «фактором подгонки» данных под правильный и/или объяснимый ответ), чтобы избежать возникшую «проблему» с расширением/сжатием. Когда Альберт Эйнштейн узнал про открытия Эдвина Хаббла, он сказал, что изменения, которые он внёс в свои уравнения, были «самой большой ошибкой (самым грубым просчётом) в его жизни».

О Нобелевской премии

Эдвин Хаббл потратил много лет своей карьеры, пытаясь сделать астрономию подразделом физики, а не рассматривать её как отдельную науку. Он делал это с тем, чтобы астрономы, включая его самого, могли быть восприняты Нобелевским комитетом за свой весомый вклад в астрофизику. Эта идея Хаббла не увенчалась успехом во времена его жизни, но вскоре после его смерти Нобелевский комитет решил, что работы в области астрономии будут подпадать под критерии вручения Нобелевских премий по физике. Но премия не может присуждаться посмертно. Поэтому, к сожалению, Э. Хаббл ее не получил.

Космический телескоп «Хаббл»

Косми́ческий телеско́п «Хаббл» - автоматическая обсерватория на орбите вокруг Земли, названная в честь Эдвина Хаббла . Телескоп «Хаббл» - совместный проект НАСА и Европейского космического агентства; он входит в число Больших обсерваторий НАСА.

На картинке – фотографии с телескопа «Хаббл»: Трехраздельная туманность. Эта туманность обозначается также M20. Ее можно легко найти на небе с помощью бинокля в созвездии Стрельца. Мощный процесс звездообразования создал не только многоцветие, но и хаос. Красное свечение обусловлено высокоэнергичным излучением, которое возбуждает межзвездный водород. Темные пылевые волокна, пронизывающие M20 , образовались в атмосферах холодных гигантских звезд и в остатках вспышек сверхновых. Пока еще остается неизвестным, какая яркая молодая звезда освещает голубую отражательную туманность. M20 находится на расстоянии 3 тысяч световых лет от нас. Диаметр этой туманности составляет 50 световых лет.

Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна - в первую очередь, в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы, разрешающая способность телескопа в 7-10 раз больше, чем у аналогичного телескопа, расположенного на Земле.

На картинке: старт шаттла «Дискавери» с телескопом «Хаббл» на борту.

Хаббл стал подлинным классиком науки двадцатого столетия. Учёный оставил грандиозное наследие - эволюционирующий мир галактик, управляемый законом его имени. Он сделал столь выдающиеся открытия, что они дают бесспорное право назвать Хаббла величайшим астрономом со времён Коперника.

Предки Хаббла, выходцы из Англии, появились на американском континенте ещё в 17-м столетии. Эдвин Пауэлл Хаббл родился 20 ноября 1889 года в небольшом городке Маршфилд в штате Миссури в семье страхового агента Джона Пауэлла Хаббла и его супруги Виржинии Ли Джеймс. Его детство прошло в крепкой дружной семье, где росло восемь детей. Астрономией Эдвин заинтересовался рано, вероятно, под влиянием своего деда по матери, построившего себе небольшой телескоп.

В 1906 году Эдвин окончил школу. Учёба давалась ему легко, занятиями он себя не утруждал и среди сверстников особо ничем не выделялся. Шестнадцатилетним юношей Хаббл поступил в Чикагский университет, входивший тогда в первую десятку лучших учебных заведений США. Там работал астроном Ф. Р. Мультон, автор известной теории происхождения Солнечной системы. Он оказал большое влияние на дальнейший выбор Хаббла.

О том, как протекала студенческая жизнь Эдвина, сведений сохранилось мало. Обычно вспоминают лишь, что он увлекался спортом, играл в баскетбол, занимался боксом, и тренеры даже прочили ему карьеру профессионального боксёра.

После окончания университета Хабблу удалось получить стипендию Родса и на три года уехать в Англию для продолжения образования. Однако вместо естественных наук ему пришлось изучать в Кембридже юриспруденцию. Здесь, в Колледже Королевы, в среде детей английской элиты сформировались все черты характера Хаббла - сдержанность, чувство собственного достоинства, проявились гуманитарные интересы, любовь к книге, развился дар чётко и убедительно излагать свои мысли. Летом 1913 года Эдвин возвратился на родину, но юристом он не стал. Хаббл стремился к науке и вернулся в Чикагский университет, где в Йеркской обсерватории под руководством профессора Фроста подготовил диссертацию на степень доктора философии. Его работа представляла собой статистическое исследование слабых спиральных туманностей в нескольких участках неба и особенной оригинальностью не отличалась. Но уже тогда Хаббл разделял мнение о том, что «спирали - это звёздные системы на расстояниях, часто измеряемых миллионами световых лет».

В это время в астрономии должно было произойти большое событие: обсерватория Маунт-Вилсон, которую возглавлял замечательный организатор науки Д. Э. Хейл, готовилась к вводу в строй крупнейшего телескопа, стодюймового рефлектора (250-сантиметрового. - Прим. авт.). Приглашение работать в обсерватории среди других получил и Хаббл. Однако весной 1917 года, когда он заканчивал свою диссертацию, США вступили в Первую мировую войну. Молодой учёный отклонил приглашение, записался добровольцем в армию, получил военное образование и был назначен командиром пехотного батальона дивизии «Чёрный ястреб». В составе Американского экспедиционного корпуса майор Хаббл попал в Европу осенью 1918 года, незадолго до окончания войны, и в боевых действиях принять участие не успел. Летом 1919 года Хаббл демобилизовался и поспешил в Пасадену, чтобы принять приглашение Хейла.

В обсерватории Хаббл начал изучать туманности, сосредоточившись сначала на объектах, видимых в полосе Млечного Пути. Это были объекты нашей Галактики - диффузные и планетарные туманности. Хаббл показал, что источником свечения туманностей являются звёзды. Ему принадлежал и вывод о том, что планетарные туманности светятся за счёт переизлучения ультрафиолетовой радиации центральных звёзд в оптический диапазон. Проблема свечения галактических туманностей в основном была решена.

А далее открывалось неоглядное поле изучения туманностей, видимых вне Млечного Пути. Первое, что сделал Хаббл - это классифицировал их. Все такие туманности, представляющие собой, как затем выяснилось, другие галактики, Хаббл разделил на спиральные, эллиптические и неправильные. На смену прежним, часто нечётким и сложным классификациям пришла стройная схема. «Я использовал её 30 лет, - писал впоследствии известный астроном Вальтер Бааде, - и хотя упорно искал объекты, которые нельзя было бы действительно уложить в хаббловскую систему, их число оказалось столь ничтожным, что я могу пересчитать их по пальцам».

Классификация Хаббла продолжает служить науке, и все последующие модификации её существа не затронули. В хрестоматии «Книга первоисточников по астрономии и астрофизике, 1900–1975» К. Ланга и О. Гингерича (США), где воспроизведены самые выдающиеся исследования за три четверти нашего столетия, помещены три работы Хаббла, и первая из них - работа по классификации внегалактических туманностей. Две другие относятся к установлению природы этих туманностей и открытию закона красного смещения.

Классификация, естественно, не решала вопроса природы туманностей. Со времени их открытия сосуществовали или менялись самые противоположные представления. В туманностях, особенно спиральных, видели и близкие объекты, в которых из диффузного вещества якобы возникают звёзды и планеты, и далёкие звёздные системы - галактики. Решающим было бы определение расстояний до них.

В 1923 году Хаббл приступил к наблюдениям туманности в созвездии Андромеды на шестидесяти и сто дюймовых рефлекторах. На первой же удачной пластинке 4 октября, сопоставленной с другими, он кроме двух новых звёзд обнаружил слабую переменную. Она оказалась цефеидой, представителем замечательного класса звёзд, период колебания блеска которых тесно связан с их светимостью. По зависимости «период - светимость», установленной по цефеидам Галактики, можно было оценить светимость обнаруженной звезды, а тогда видимый блеск сразу же указывал на её расстояние и тем самым на расстояние до Туманности Андромеды. Учёный сделал вывод, что большая Туманность Андромеды действительно другая звёздная система. Такие же результаты Хаббл получил и для туманности NGC 6822 и туманности в Треугольнике.

Хотя об открытии Хаббла вскоре стало известно ряду астрономов, официальное сообщение последовало лишь 1 января 1925 года, когда на съезде Американского астрономического общества Г. Рессел зачитал доклад Хаббла. Известный астроном Д. Стеббинс писал, что доклад Хаббла «во сто крат расширил объём материального мира и с определённостью решил долгий спор о природе спиралей, доказав, что это гигантские совокупности звёзд, почти сравнимые по размерам с нашей собственной Галактикой». Теперь Вселенная предстала перед астрономами пространством, заполненным звёздными островами - галактиками.

Задержка в сообщении столь важного результата на год с лишним была связана с противоречием, в которое вступало открытие Хаббла с казавшимся тогда убедительным, а на самом деле ошибочным выводом А. ван Маанена о быстром вращении ряда спиральных галактик.

Уже одно установление истинной природы туманностей определило место Хаббла в истории астрономии. Но на его долю выпало и ещё более выдающееся достижение - открытие закона красного смещения.

В середине января 1929 года в «Труды» Национальной академии наук США Хаббл представил небольшую заметку под названием «О связи между расстоянием и лучевой скоростью внегалактических туманностей». Простое сопоставление скоростей туманностей с их расстояниями, несомненно, свидетельствовало о том, что искомая связь существует и вводимый в кинематические уравнения K-член должен быть пропорциональным расстоянию. По данным Хаббла, коэффициент в K-члене составлял около 500 км/с на каждый мегапарсек (впоследствии выяснилось, что полученное значение завышено примерно на порядок). Это означало, что галактики разлетаются друг от друга и их скорости линейно увеличиваются с расстоянием. Вскоре эта зависимость была названа законом Хаббла, а коэффициент пропорциональности - постоянной Хаббла и в его честь стала обозначаться латинской буквой H0.

В обсерватории Маунт-Вилсон началось определение лучевых скоростей всё более удалённых галактик. К 1936 году М. Хьюмасон публикует данные для ста туманностей. Рекордную скорость в 42 000 км/с удалось зарегистрировать у члена далёкого скопления галактик в Большой Медведице. Но это уже было пределом возможностей стодюймового телескопа. Нужны были более мощные инструменты.

В 1935 году Хаббл и физик-теоретик Р. Толмен сделали попытку рассмотреть природу красного смещения, исходя из подсчётов галактик. Красное смещение ослабляет свет галактик и в измеренные их звёздные величины необходимо вводить некоторые поправки. В зависимости от причины красного смещения такие поправки будут различными, а отсюда окажутся разными и результаты подсчётов галактик в зависимости от звёздной величины. Однако получить определённый результат исследователям не удалось. «Окончательный вывод, - указывал Хаббл, - основанный на наблюдательных критериях, невозможен до тех пор, пока не будут получены результаты с 200-дюймовым рефлектором».

Закон Хаббла практически сразу же был признан в науке. Значение открытия Хаббла высоко оценил Эйнштейн. В январе 1931 года он писал «Новые наблюдения Хаббла и Хьюмасона относительно красного смещения… делают вероятным предположение, что общая структура Вселенной не стационарная».

Хаббл становится одним из известнейших астрономов мира. Его приглашают с лекциями в университеты Америки и Англии, награждают почётными медалями, избирают в члены академий и научных обществ. В Йельском университете он читает курс лекций о галактиках, опубликованный затем в виде книги «Мир туманностей», - сводку знаний, полученных им на крупнейшем приборе того времени. Высокое признание заслуг не изменило жизни Хаббла. Он по-прежнему упорно работал и, как ранее, сторонился организационной и всякого рода представительской деятельности. Но было бы неверным представлять его отшельником, у него немало интересных друзей и хороших знакомых. Среди них композитор Игорь Стравинский, писатель Олдос Хаксли, художник и режиссёр Уолт Дисней, американские и английские литераторы, актёры. Он глубоко интересовался философией и историей науки, собирал редчайшие книги XVI–XVII веков по астрономии, был тесно связан с известной Хантингтонской библиотекой в Сан-Марино.

Есть свидетельства, что Хаббл был достаточно консервативным в вопросах политики. Но это не мешало ему занять чёткую гражданскую позицию в развязанной гитлеровской Германией Второй мировой войне. В октябре 1940 года Хаббл впервые публично выступил с призывом к немедленной помощи Великобритании, а в ноябре 1941 года за шесть недель до трагедии Пёрл-Харбора Хаббл обратился к американским ветеранам, ещё более чётко определив свою позицию: «Я не говорю вам, что нам нужно бороться на стороне Англии или России. Я говорю вам, что это наша война… Если американские экспедиционные силы нужны для сокрушения нацизма, они должны быть посланы за рубеж. Нам не приходится выбирать - это суровая необходимость».

Сразу же после того, как США объявили войну Японии, отставной майор Хаббл, которому было уже за пятьдесят, сделал безуспешную попытку попасть в армию. Но лишь в августе 1942 года ему удалось включиться в оборонную работу на Абердинском полигоне (восточное побережье Америки). Центром полигона была баллистическая лаборатория, которую и возглавил Хаббл. Работа подразделения Хаббла оказалась, в частности, связанной и с челночными операциями американской бомбардировочной авиации в 1944 году. «Настоящим подвигом, - вспоминал Хаббл после войны, - было создание таблиц бомбометания для русских бомб, не располагая какими-либо данными, кроме качественного описания. Эти таблицы использовали на наших бомбардировщиках, когда они ложились на обратный курс после приземления на русской территории».

Хаббл честно выполнил свой долг и мог быть удовлетворён высокой оценкой его трудов, его наградили в 1946 году медалью «За заслуги», специально учреждённой для гражданских лиц за выдающийся вклад в военные действия. Такую же награду в тот год получили Ферми, Оппенгеймер и другие физики - создатели атомного оружия.

Хаббл вернулся к мирному труду с твёрдым убеждением, что войн больше быть не должно. «Война с применением новых видов оружия, - говорил он об атомных бомбах и ракетах, - превратит цивилизацию в руины. Сейчас наш мир стал таким маленьким, столь достижимыми стали все его уголки, что никакому народу нельзя сохранить свою безопасность в одиночку. Даже если это против наших желаний, чтобы выжить, мы вынуждены сотрудничать друг с другом. Война или самоуничтожение - эти понятия мы должны считать синонимами».

После войны в обсерватории, куда вернулся Хаббл, возобновились работы по созданию двухсотдюймового (508-сантиметрового) телескопа. Хаббл возглавил комитет по разработке перспективных планов исследований на новом инструменте, был членом комитета по управлению объединившихся обсерваторий Маунт-Вилсон и Маунт-Паломар. Главную задачу обсерватории Хаббл видел в решении космологической проблемы. «Можно с уверенностью предсказать, - убеждённо говорил он, - что 200-дюймовик ответит нам, следует ли красное смещение считать свидетельством в пользу быстро расширяющейся Вселенной или оно обязано некоему новому принципу природы».

Хаббл не сомневался, что именно ему и предстоит главная работа в этом направлении на новом инструменте. Однако его коллеги считали, что задуманные Хабблом подсчёты слабых галактик недостаточно эффективное средство решения проблемы, общее значение которой сомнению никто не подвергал. Нужно было укрепить всю базу, на которой строились внегалактические исследования прежде всего, вести фотоэлектрические измерения слабых звёзд, как стандартов фотометрии, искать цефеиды и иные индикаторы расстояний в далёких галактиках, решать другие не менее важные задачи и только потом браться за новое определение постоянной Хаббла. По существу Хаббл был отстранён от активной работы на двухсотдюймовом рефлекторе, окончательно вступившем в строй в 1949 году. Но всё-таки первые снимки на новом инструменте получил именно он.

Летом 1949 года Хаббл перенёс тяжёлый инфаркт. С трудом справившись с недугом, он снова вернулся к работе - искал в галактиках переменные и новые звёзды, открывал сверхновые. Но активность его заметно упала, и публикаций за эти годы было мало. Последней серьёзной работой Хаббла было выполненное вместе с молодым учёным Сендиджем исследование переменных звёзд высокой светимости в туманностях Андромеды и Треугольника. Эти массивные молодые звёзды интересны не только с точки зрения звёздной эволюции, но и как возможные индикаторы расстояний до тех далёких галактик, где цефеиды наблюдать уже нельзя.

В мае 1953 года Хаббл посетил Англию, где на собрании Королевского астрономического общества он читал лекцию о законе красного смещения, рассказывал о перспективах исследований по космологии. По-видимому, он чувствовал себя вполне здоровым, и ничто не предвещало близкого конца.

Хаббл ушёл из жизни от инсульта 28 сентября 1953 года совершенно неожиданно, когда в обеденный час вместе с женой он из обсерватории подъезжал на машине к своему дому.

На Земле нет памятников Хабблу. Никому не известно даже, где он похоронен, такова была воля его жены. Его именем назван кратер на Луне и астероид № 2069. В честь одного из выдающихся астрономов XX века Эдвина Хаббла в 1990 году был назван самый мощный телескоп, выведенный на космическую орбиту и значительно расширивший возможности астрономов.

Хаббл стал подлинным классиком науки двадцатого столетия. Ученый оставил грандиозное наследие - эволюционирующий мир галактик, управляемый законом его имени. Он сделал столь выдающиеся открытия, что они дают бесспорное право назвать Хаббла величайшим астрономом со времен Коперника.

Предки Хаббла, выходцы из Англии, появились на американском континенте еще в XVII столетии. Эдвин Хаббл родился 20 ноября 1889 года в небольшом городке Маршфилд в штате Миссури в семье страхового агента Джона Пауэла Хаббла и его супруги Виржинии Ли Джеймс. Его детство прошло в крепкой дружной семье, где росло восемь детей. Астрономией Эдвин заинтересовался рано, вероятно, под влиянием своего деда по матери, построившего себе небольшой телескоп.

В 1906 году Эдвин окончил школу. Учеба давалась ему легко, занятиями он себя не утруждал и среди сверстников особо ничем не выделялся. Шестнадцатилетним юношей Хаббл поступил в Чикагский университет, входивший тогда в первую десятку лучших учебных заведений США. Там работал астроном Ф.Р. Мультон, автор известной теории происхождения Солнечной системы. Он оказал большое влияние на дальнейший выбор Хаббла.

О том, как протекала студенческая жизнь Эдвина, сведений сохранилось мало. Обычно вспоминают лишь, что он увлекался спортом, играл в баскетбол, занимался боксом, и тренеры даже прочили ему карьеру профессионального боксера.

После окончания университета Хабблу удалось получить стипендию Родса и на три года уехать в Англию для продолжения образования. Однако вместо естественных наук ему пришлось изучать в Кембридже юриспруденцию. Здесь, в Колледже Королевы, в среде детей английской элиты, сложились все черты характера Хаббла - сдержанность, чувство собственного достоинства, проявились гуманитарные интересы, любовь к книге, развился дар четко и убедительно излагать свои мысли. Летом 1913 года Эдвин возвратился на родину, но юристом он не стал. Хаббл стремился к науке и вернулся в Чикагский университет, где в Йеркской обсерватории под руководством профессора Фроста подготовил диссертацию на степень доктора философии. Его работа представляла собой статистическое исследование слабых спиральных туманностей в нескольких участках неба и особенной оригинальностью не отличалась. Но уже тогда Хаббл разделял мнение о том, что «спирали - это звездные системы на расстояниях, часто измеряемых миллионами световых лет».

В это время в астрономии должно было произойти большое событие обсерватория Маунт-Вилсон, которую возглавлял замечательный организатор науки Д.Э. Хейл, готовилась к вводу в строй крупнейшего телескопа, стодюймового рефлектора (250-сантиметрового - прим. авт.). Приглашение работать в обсерватории среди других получил и Хаббл. Однако весной 1917 года, когда он заканчивал свою диссертацию, США вступили в первую мировую войну. Молодой ученый отклонил приглашение, записался добровольцем в армию, получил военное образование и был назначен командиром пехотного батальона дивизии «Черный ястреб». В составе Американского экспедиционного корпуса майор Хаббл попал в Европу осенью 1918 года, незадолго до окончания войны, и в боевых действиях принять участие не успел. Летом 1919 года Хаббл демобилизовался и поспешил в Пасадену, чтобы принять приглашение Хейла.

В обсерватории Хаббл начал изучать туманности, сосредоточившись сначала на объектах, видимых в полосе Млечного Пути. Это были объекты нашей Галактики - диффузные и планетарные туманности. Хаббл показал, что источником свечения туманностей являются звезды. Ему принадлежал и вывод о том, что планетарные туманности светятся за счет переизлучения ультрафиолетовой радиации центральных звезд в оптический диапазон. Проблема свечения галактических туманностей в основном была решена.

А далее открывалось неоглядное поле изучения туманностей, видимых вне Млечного Пути. Первое, что сделал Хаббл - это классифицировал их. Все такие туманности, представляющие собой, как затем выяснилось, другие галактики, Хаббл разделил на спиральные, эллиптические и неправильные. На смену прежним, часто нечетким и сложным классификациям пришла стройная схема. «Я использовал ее 30 лет, - писал впоследствии известный астроном Вальтер Бааде, - и хотя упорно искал объекты, которые нельзя было бы действительно уложить в хаббловскую систему, их число оказалось столь ничтожным, что я могу пересчитать их по пальцам».

Классификация Хаббла продолжает служить науке, и все последующие модификации ее существа не затронули. В хрестоматии «Книга первоисточников по астрономии и астрофизике, 1900 1975 » К. Ланга и О. Гингерича (США), где воспроизведены самые выдающиеся исследования за три четверти нашего столетия, помещены три работы Хаббла, и первая из них - работа по классификации внегалактических туманностей. Две другие относятся к установлению природы этих туманностей и открытию закона красного смещения.

Классификация, естественно, не решала вопроса природы туманностей. Со времени их открытия сосуществовали или менялись самые противоположные представления. В туманностях, особенно спиральных, видели и близкие объекты, в которых из диффузного вещества якобы возникают звезды и планеты, и далекие звездные системы - галактики. Решающим было бы определение расстояний до них.

В 1923 году Хаббл приступил к наблюдениям туманности в созвездии Андромеды на шестидесяти и сто дюймовых рефлекторах. На первой же удачной пластинке 4 октября, сопоставленной с другими, он кроме двух новых звезд обнаружил слабую переменную. Она оказалась цефеидой, представителем замечательного класса звезд, период колебания блеска которых тесно связан с их светимостью. По зависимости «период - светимость», установленной по цефеидам Галактики, можно было оценить светимость обнаруженной звезды, а тогда видимый блеск сразу же указывал на ее расстояние и тем самым на расстояние до Туманности Андромеды. Ученый сделал вывод, что большая Туманность Андромеды действительно другая звездная система. Такие же результаты Хаббл получил и для туманности МОС 6822 и туманности в Треугольнике.

Хотя об открытии Хаббла вскоре стало известно ряду астрономов, официальное сообщение последовало лишь 1 января 1925 года, когда на съезде Американского астрономического общества Г. Рессел зачитал доклад Хаббла. Известный астроном Д. Стеббинс писал, что доклад Хаббла «во сто крат расширил объем материального мира и с определенностью решил долгий спор о природе спиралей, доказав, что это гигантские совокупности звезд, почти сравнимые по размерам с нашей собственной Галактикой». Теперь Вселенная предстала перед астрономами пространством, заполненным звездными островами - галактиками.

Задержка в сообщении столь важного результата на год с лишним была связана с противоречием, в которое вступало открытие Хаббла с казавшимся тогда убедительным, а на самом деле ошибочным, выводом А. ван Маанена о быстром вращении ряда спиральных галактик.

Уже одно установление истинной природы туманностей определило место Хаббла в истории астрономии. Но на его долю выпало и еще более выдающееся достижение - открытие закона красного смещения.

В середине января 1929 года в «Труды» Национальной академии наук США Хаббл представил небольшую заметку под названием «О связи между расстоянием и лучевой скоростью внегалактических туманностей». Простое сопоставление скоростей туманностей с их расстояниями, несомненно, свидетельствовало о том, что искомая связь существует и вводимый в кинематические уравнения К-член должен быть пропорциональным расстоянию. По данным Хаббла, коэффициент в К-члене составлял около 500 кмс на каждый мегапарсек (впоследствии выяснилось, что полученное значение завышено примерно на порядок). Это означало, что галактики разлетаются друг от друга и их скорости линейно увеличиваются с расстоянием. Вскоре эта зависимость была названа законом Хаббла, а коэффициент пропорциональности - постоянной Хаббла и в его честь стала обозначаться латинской буквой Н.

В обсерватории Маунт-Вилсон началось определение лучевых скоростей все более удаленных галактик. К 1936 году М. Хьюмасон публикует данные для ста туманностей. Рекордную скорость в 42 000 кмс удалось зарегистрировать у члена далекого скопления галактик в Большой Медведице. Но это уже было пределом возможностей стодюймового телескопа. Нужны были более мощные инструменты.

В 1935 году Хаббл и физик-теоретик Р. Толмен сделали попытку рассмотреть природу красного смещения, исходя из подсчетов галактик. Красное смещение ослабляет свет галактик и в измеренные их звездные величины необходимо вводить некоторые поправки. В зависимости от причины красного смещения такие поправки будут различными, а отсюда окажутся разными и результаты подсчетов галактик в зависимости от звездной величины. Однако получить определенный результат исследователям не удалось. «Окончательный вывод, - указывал Хаббл, - основанный на наблюдательных критериях, невозможен до тех пор, пока не будут получены результаты с 200-дюймовым рефлектором».

Закон Хаббла практически сразу же был признан в науке. Значение открытия Хаббла высоко оценил Эйнштейн. В январе 1931 года он писал «Новые наблюдения Хаббла и Хьюмасона относительно красного смещения... делают вероятным предположение, что общая структура Вселенной не стационарная».

Хаббл становится одним из известнейших астрономов мира. Его приглашают с лекциями в университеты Америки и Англии, награждают почетными медалями, избирают в члены академий и научных обществ. В Йельском университете он читает курс лекций о галактиках, опубликованный затем в виде книги «Мир туманностей», - сводку знаний, полученных им на крупнейшем приборе того времени. Высокое признание заслуг не изменило жизни Хаббла. Он по-прежнему упорно работал и, как ранее, сторонился организационной и всякого рода представительской деятельности. Но было бы неверным представлять его отшельником, у него немало интересных друзей и хороших знакомых. Среди них композитор Игорь Стравинский, писатель Олдос Хаксли, художник и режиссер Уолт Дисней, американские и английские литераторы, актеры. Он глубоко интересовался философией и историей науки, собирал редчайшие книги XVI–XVII веков по астрономии, был тесно связан с известной Хантингтонской библиотекой в Сан-Марино.

Есть свидетельства, что Хаббл был достаточно консервативным в вопросах политики. Но это не мешало ему занять четкую гражданскую позицию в развязанной гитлеровской Германией второй мировой войне. В октябре 1940 года Хаббл впервые публично выступил с призывом к немедленной помощи Великобритании, а в ноябре 1941 года за шесть недель до трагедии Перл-Харбора Хаббл обратился к американским ветеранам, еще более четко определив свою позицию «Я не говорю вам, что нам нужно бороться на стороне Англии или России. Я говорю вам, что это наша война... Если американские экспедиционные силы нужны для сокрушения нацизма, они должны быть посланы за рубеж. Нам не приходится выбирать - это суровая необходимость».

Сразу же после того, как США объявили войну Японии отставной майор Хаббл, которому было уже за пятьдесят, сделал безуспешную попытку попасть в армию. Но лишь в августе 1942 года ему удалось включиться в оборонную работу на Абердинском полигоне (восточное побережье Америки). Центром полигона была баллистическая лаборатория, которую и возглавил Хаббл. Работа подразделения Хаббла оказалась, в частности, связанной и с челночными операциями американской бомбардировочной авиации в 1944 году. «Настоящим подвигом, - вспоминал Хаббл после войны, - было создание таблиц бомбометания для русских бомб, не располагая какими-либо данными, кроме качественного описания. Эти таблицы использовали на наших бомбардировщиках, когда они ложились на обратный курс после приземления на русской территории».

Хаббл честно выполнил свой долг и мог быть удовлетворен высокой оценкой его трудов, его наградили в 1946 году «Медалью за заслуги», специально учрежденной для гражданских лиц за выдающийся вклад в военные действия. Такую же награду в тот год получили Ферми, Оппенгеймер и другие физики - создатели атомного оружия.

Хаббл вернулся к мирному труду с твердым убеждением, что войн больше быть не должно. «Война с применением новых видов оружия, - говорил он об атомных бомбах и ракетах, - превратит цивилизацию в руины... Сейчас наш мир стал таким маленьким, столь достижимыми стали все его уголки, что никакому народу нельзя сохранить свою безопасность в одиночку. Даже если это против наших желаний, чтобы выжить, мы вынуждены сотрудничать друг с другом. Война или самоуничтожение - эти понятия мы должны считать синонимами».

После войны в обсерватории, куда вернулся Хаббл, возобновились работы по созданию двухсотдюймового (508 сантиметрового) телескопа. Хаббл возглавил комитет по разработке перспективных планов исследований на новом инструменте, был членом комитета по управлению объединившихся обсерваторий Маунт-Вилсон и Маунт-Паломар. Главную задачу обсерватории Хаббл видел в решении космологической проблемы. «Можно с уверенностью предсказать, - убежденно говорил он, - что 200-дюймовик ответит нам, следует ли красное смещение считать свидетельством в пользу быстро расширяющейся Вселенной или оно обязано некоему новому принципу природы».

Хаббл не сомневался, что именно ему и предстоит главная работа в этом направлении на новом инструменте. Однако его коллеги считали, что задуманные Хабблом подсчеты слабых галактик не достаточно эффективное средство решения проблемы, общее значение которой сомнению никто не подвергал. Нужно было укрепить всю базу, на которой строились внегалактические исследования прежде всего, вести фотоэлектрические измерения слабых звезд, как стандартов фотометрии, искать цефеиды и иные индикаторы расстояний в далеких галактиках, решать другие не менее важные задачи и только потом браться за новое определение постоянной Хаббла. По существу, Хаббл был отстранен от активной работы на двухсотдюймовом рефлекторе, окончательно вступившем в строй в 1949 году. Но все-таки первые снимки на новом инструменте получил именно он.

Летом 1949 года Хаббл перенес тяжелый инфаркт. С трудом справившись с недугом, он снова вернулся к работе - искал в галактиках переменные и новые звезды, открывал сверхновые. Но активность его заметно упала, и публикаций за эти годы было мало. Последней серьезной работой Хаббла было выполненное вместе с молодым ученым Сендиджем исследование переменных звезд высокой светимости в туманностях Андромеды и Треугольника. Эти массивные молодые звезды интересны не только с точки зрения звездной эволюции, но и как возможные индикаторы расстояний до тех далеких галактик, где цефеиды наблюдать уже нельзя.

В мае 1953 года Хаббл посетил Англию, где на собрании Королевского астрономического общества он читал лекцию о законе красного смещения, рассказывал о перспективах исследований по космологии. По-видимому, он чувствовал себя вполне здоровым, и ничто не предвещало близкого конца.

Хаббл ушел из жизни от инсульта 28 сентября 1953 года совершенно неожиданно, когда в обеденный час вместе с женой он из обсерватории подъезжал на машине к своему дому.

На Земле нет памятников Хабблу. Никому не известно даже, где он похоронен, такова была воля его жены. Его именем назван кратер на Луне и астероид № 2069 . В честь одного из выдающихся астрономов двадцатого века Эдвина Хаббла в 1990 году был назван самый мощный телескоп, выведенный на космическую орбиту и значительно расширивший возможности астрономов.

ХАББЛ ЭДВИН

(1889 г. – 1953 г.)

«Абсолютная сила духа, моральная стойкость, никаких безрассудств, дворянин по облику».

Алан Сэндидж


В биографии Эдвина Хаббла много неясных моментов. Дело в том, что зачастую известные исследователям факты противоречат воспоминаниям самого ученого. К сожалению, рамки небольшого обзора не позволяют вести подробных исследований или хотя бы излагать альтернативные точки зрения. Поэтому мы попытаемся опираться только на достоверные и проверенные факты.

Итак, Эдвин Пауэл Хаббл родился 20 ноября 1889 года в городе Мэнсфилд, штат Миссури, США. Отец его был владельцем страхового агентства. Эдвин был третьим ребенком в семье, после него на свет появилось еще пятеро братьев и сестер.

Дети в семье Хабблов получали всестороннее развитие. Все играли на музыкальных инструментах, дома часто устраивали по вечерам концерты. Кроме того, семья была очень религиозна. Эдвин очень любил читать, особенно ему нравились фантастические романы Жюля Верна. Его дедушка по материнской линии Уильям Гендерсон Джеймс построил телескоп, и конечно, это во многом способствовало тому, что у Эдвина рано проснулся интерес к астрономии. Его сестра Элен вспоминала: «Телескоп настолько очаровал Эдвина, что тот попросил, чтобы вместо празднования своего восьмого дня рождения ему позволили до позднего часа не ложиться спать и насмотреться в инструмент до полного удовольствия…». Семья была обеспеченной, но всех детей приучали к домашней работе, кроме того, им разрешалось зарабатывать на карманные расходы во время каникул. Хаббл вспоминал, что с удовольствием ухаживал за лужайкой у дома, подстригал на ней траву, получая за это деньги от отца. Однажды летом он получил работу в геодезической партии, прокладывавшей маршрут железной дороги в лесах у Великих озер. Рассказывали, что во время этой поездки на юношу напали двое грабителей. Эдвина даже ранили ножом, но он вышел из схватки победителем. Надо сказать, что физически Эдвин Хаббл был развит просто прекрасно.

После окончания средней школы Эдвин стал студентом Чикагского университета. Учился он с интересом, участвовал в исследованиях, проводимых в лаборатории известного физика Милликена .

В студенческие годы Хаббл активно занимался спортом – боксом и футболом, ему даже предлагали стать профессиональным боксером. Но Эдвин выбрал науку. В 1910 году, получив стипендию для продолжения обучения в Великобритании, Хаббл неожиданно изменил своему увлечению астрономией и решил изучать в Оксфордском университете международное право.

В 1913 году, получив в Англии степень бакалавра права, Эдвин вернулся в США. Однако адвокатской практикой он занимался недолго – любовь к астрономии все-таки взяла верх. Эдвин отправился в Чикаго и поступил на работу в Иеркскую обсерваторию. Эта обсерватория располагала лучшим по тем временам оборудованием – 100-сантиметровым телескопом и 60-сантиметровым телескопом-рефлектором. Хаббл занял должность ассистента директора обсерватории Э. Фроста и приступил к активной научно-исследовательской работе. За непродолжительное время молодой ученый открыл 512 новых туманностей. На 1917 год он запланировал подготовить докторскую диссертацию «Фотографические исследования слабых туманностей». В том же 1917 году Хаббл получил приглашение от Эллери Хейла, директора обсерватории Маунт-Вилсон в Калифорнии. Хейл предложил Эдвину работу на самом большом в то время 250-сантиметровом рефлекторе. «К сожалению, не могу принять Ваше предложение. Ухожу на войну», – такой неожиданный ответ получил директор обсерватории. Соединенные Штаты Америки вступили в Первую мировую войну. Хаббл за ночь дописал свою диссертацию, на следующее утро защитил ее и добровольцем пошел в армию. После учебного лагеря он получил звание капитана, был назначен командиром батальона в дивизии «Черный ястреб», в составе которой его направили во Францию. К окончанию войны Хаббл имел чин майора.

После демобилизации Эдвин Хаббл все же принял предложение Эллери Хейла и приступил к работе в Иеркской обсерватории. Он возобновил изучение туманностей. В 1922 году вышла его работа «Общее исследование диффузных галактических туманностей», в которой он заложил основы классификации туманностей, в частности, разделил все туманности на галактические (газово-пылевые туманности, находящиеся в нашей галактике) и внегалактические (находящиеся вне Млечного Пути), то есть собственно другие галактики. Для галактических туманностей Хаббл рассмотрел механизмы свечения. Он показал, что планетарные туманности светятся за счет переизлучения туманностью интенсивного ультрафиолетового излучения, испускаемого центральной звездой. Свечение же диффузных туманностей (туманностей неправильной формы), согласно исследованиям Хаббла, вызвано отражением света близлежащих звезд.

В 1923 году ученый приступил к подробному изучению туманности в созвездии Андромеды. На снимке, сделанном 4 октября, он обнаружил вспышки двух новых звезд и одну небольшую звезду. Сравнив этот снимок с другими, Хаббл обнаружил, что небольшая звезда является цефеидой . К тому времени цефеиды Млечного Пути были уже довольно неплохо изучены. По известной уже зависимости периода пульсации цефеид от их светимости (мощности излучения) можно было установить светимость открытой Хабблом звезды. А сравнение светимости с видимым блеском звезды давало возможность рассчитать расстояние до нее и, следовательно, до туманности Андромеды. Хаббл приблизительно оценил это расстояние в 1 миллион световых лет (по современным данным – 2 миллиона). Хотя в своих расчетах Хаббл и ошибся в два раза – полученное им расстояние намного превышало размеры нашей Галактики. Подобные данные Хаббл получил еще для двух туманностей. Фактически ученый поставил точку в споре о природе спиральных туманностей, окончательно доказав, что они являются самостоятельными звездными системами, подобными Млечному Пути. Стало понятно, что Вселенная является пространством, заполненным звездными островами – галактиками. Доклад о результатах своих исследований Хаббл сделал 1 января 1925 года на заседании Американского астрономического общества. За эту работу он был награжден премией Ассоциации развития науки. С этого момента имя Эдвина Хаббл а стало известно во всем научном мире.

В дальнейшем Хаббл продолжил изучать строение галактик. Вскоре он предложил их классификацию, в основу которой были положены морфологические особенности. Ученый разделил галактики на спиральные, эллиптические и неправильные. Следует отметить, что на классификации Хаббла базируется и современная классификация галактик. Естественно, что глобальные исследования Хаббла привели и к множеству частных открытий. Ученый обнаруживал новые звезды, цефеиды, шаровые скопления, газовые туманности.

В середине января 1929 года Эдвин Хаббл опубликовал небольшую работу «О связи между расстоянием и лучевой скоростью внегалактических туманностей». В ней содержалась информация о важнейшей закономерности, известной ныне как закон Хаббла. Остановимся на нем подробнее. Астрономам был известен такой парадоксальный факт: длины волн, излучаемых атомами далеких галактик, несколько больше, чем длина волн, излучаемых такими же атомами, находящимися на Земле. Хаббл первым предположил, что это наблюдение является следствием эффекта Доплера . Это означало, что галактики движутся в направлении от Млечного Пути. Но Хаббл на этом не остановился. К тому времени он получил информацию о расстоянии до 46 галактик. Хаббл сравнил расстояния со скоростью движения галактик, вычисленной благодаря эффекту Доплера. Результат оказался потрясающим: чем дальше от нас находится галактика, тем быстрее она движется.

Закон Хаббла по своему значению не уступает, например, законам Кеплера. Закон этот удивителен, но следствия его еще удивительней. Оказывается, Вселенная расширяется, более того, закон Хаббла позволяет предполагать возраст Вселенной (ведь имеется возможность примерно подсчитать, когда это расширение началось). По современным представлениям Вселенная появилась около 15 миллиардов лет назад. Поскольку скорость движения галактик не может превышать скорость света, можно сделать вывод и о максимальных размерах Вселенной – 15 миллиардов световых лет. Кроме этого, закон Хаббла является основой различных моделей появления и развития Вселенной.

К этому времени Эдвин Хаббл был уже известным и титулованным ученым. В 1927 году он был избран в Национальную академию США, стал действительным членом Королевского астрономического общества Великобритании. Опубликование же работы «О связи между расстоянием и лучевой скоростью внегалактических туманностей» буквально вознесло его на вершину научного Олимпа. Ученого приглашали читать лекции в университеты всего мира. Основываясь на материалах своих лекций, Хаббл опубликовал две книги: «Мир туманностей» (1935) и «Наблюдательный подход к космологии» (1937). В 1940 году американский ученый получил Золотую медаль Королевского астрономического общества.

Интересно, что прославленный астроном предпочитал выполнять все исследовательские работы лично. Его коллега, известный астрофизик Алан Рекс Сэндидж, вспоминал, что у Хаббла никогда не было ассистентов, всю работу он делал сам, вплоть до самого конца, когда он перенес тяжелую болезнь.

После начала Второй мировой войны Эдвин Хаббл возглавил Южно-Калифорнийский объединенный комитет борьбы за свободу. В октябре 1940 года он выступил с призывом о немедленной помощи Великобритании. Но словами ученый не ограничивался. Конечно же, вновь пойти в армию, как он сделал это во время Первой мировой войны, он не мог, но по приглашению артиллерийского начальства работал в исследовательском центре на Абердинском полигоне. Ученый много занимался теорией бомбометания. «Настоящим подвигом было создание таблиц бомбометания для русских бомб, о которых не было никаких аэродинамических данных, кроме качественного описания и формы, – вспоминал Эдвин Хаббл. – Эти таблицы использовались на наших бомбардировщиках, когда они ложились на обратный курс после приземления на русской территории» (на советских аэродромах американские бомбардировщики брали на борт бомбы и использовали, возвращаясь на свои аэродромы). В 1946 году Хаббл был награжден медалью «За заслуги».

После окончания войны Эдвин Хаббл вновь вернулся к научной деятельности. Он намеревался подготовить «Атлас галактик», провести множественные исследования с помощью нового 5-метрового рефлектора, строящегося в обсерватории Маунт-Пал омар. Но планам этим не суждено было реализоваться. Новый телескоп начал работать 26 января 1949 года. Первый негатив получил именно Хаббл. Но в июле этого же года у ученого случился тяжелейший инфаркт. Через некоторое время могучий организм, казалось, справился с болезнью, и Хаббл вновь приступил к наблюдениям. Он вместе с Сэндиджем совершил несколько открытий, в частности, коллеги обнаружили ранее неизвестный тип переменных звезд, названных «Объекты Хаббла – Сэндиджа». Но опубликованную статью об этом открытии Хабблу уже не суждено было увидеть. 28 сентября 1953 года, возвращаясь из обсерватории домой, Эдвин Хаббл умер прямо в машине от инсульта.

Сейчас имя американского астронома носит крупнейший космический телескоп, его именем назван кратер на видимой стороне Луны, а самого Эдвина Хаббла вполне заслуженно называют величайшим астрономом со времен Коперника.

Немногие телескопы могут похвастаться таким весомым вкладом в астрономические исследования, как космический телескоп «Хаббл».

Благодаря космическому телескопу мы расширили наши представления, пересмотрели предварительные теории и построили новые, подробнее объясняющие астрономические явления.

В апреле 2006 года исполнилось 16 лет с тех пор, как «Хаббл» находится в космосе, но пока NASA борется за возобновление полетов шаттлов, телескоп продолжает дряхлеть. Если астронавты не смогут его отремонтировать, то к середине 2008 года он окончательно выйдет из строя.

С помощью «Хаббла» было совершено 10 важнейших открытий в астрономии. За последние годы, вместе с другими обсерваториями, «Хаббл» обнаружил два новых спутника Плутона, неожиданно (и парадоксально) — обширную галактику в очень молодой Вселенной, а также спутник с массой планеты у коричневого карлика, весящего ненамного больше самой планеты. Нам удалось уточнить характеристики Вселенной, которые прежде существовали лишь в нашем воображении.

1. Столкновение с кометой

По космическим масштабам столкновение кометы Шумейкеров-Леви 9 с Юпитером было рядовым событием: усеянные кратерами поверхности планет и их спутников показывают, что Солнечная система — настоящий тир. Но в масштабе жизни человека с таким событием можно столкнуться лишь однажды: в среднем комета врезается в планету раз в тысячу лет.

За год до гибели кометы Шумейкеров-Леви 9 полученные «Хабблом» изображения показали, что она раскололась на две дюжины фрагментов, которые растянулись в цепочку. Первый из них врезался в атмосферу Юпитера 16 июля 1994 года, а за ним в течение недели упали и остальные. На изображениях видны выбросы, похожие на гриб ядерного взрыва, поднимающиеся над горизонтом Юпитера, а затем оседающие и рассасывающиеся через 10 минут после столкновения. Но последствия взрыва наблюдались еще в течение нескольких месяцев.

Следы столкновений помогают выяснить состав газового гиганта. От каждого из них волны разбегались со скоростью 450 м/сек. Судя по всему, это «тяжелые» волны, упругость в которых создается силой плавучести. Характер распространения волн указывает, что отношение кислорода к водороду в атмосфере Юпитера может быть в 10 раз больше, чем на Солнце. Однако если Юпитер сформировался в результате гравитационной неустойчивости первичного газопылевого диска, то его состав должен быть таким же, как у диска, то есть соответствовать химическому составу Солнца. Это противоречие так и остается неразгаданным.

2. Внесолнечные планеты

В 2001 году Американское астрономическое общество обратилось с просьбой к специалистам выбрать наиболее значимое, с их точки зрения, открытие последнего десятилетия. По мнению большинства, им стало обнаружение планет вне Солнечной системы. Сегодня известно около 180 таких объектов. Значительная их часть найдена с помощью наземных телескопов по небольшим колебаниям звезды, вызванным гравитационным воздействием обращающейся вокруг нее планеты. Пока такие наблюдения дают минимум информации: только размер и эллиптичность орбиты планеты, а также нижний предел ее массы.

Исследователи сосредоточились на тех планетах, орбитальные плоскости которых ориентированы вдоль нашего луча зрения. Наблюдение «Хабблом» первого из обнаруженных прохождений спутника звезды HD 209458 дало наиболее полную информацию о планете вне Солнечной системы. Она на 30% легче Юпитера, но при этом на столько же больше его в диаметре, возможно, потому, что излучение близкой звезды заставило ее раздуться. Данные «Хаббла» достаточно точны, чтобы выявить широкие кольца и массивные спутники, но их не оказалось. «Хаббл» впервые определил химический состав планеты вблизи другой звезды. В ее атмосфере содержатся натрий, углерод и кислород, а водород испаряется в пространство, создавая кометообразный хвост. Эти наблюдения — предтеча поисков химических признаков жизни в далеких уголках Галактики.

3. Агония звезд

Согласно теории, звезда с массой от 8 до 25 масс Солнца завершает свою жизнь взрывом сверхновой. Исчерпав запасы топлива, она резко теряет способность удерживать собственный вес. Ее ядро коллапсирует, превращаясь в нейтронную звезду — массивный, сверхплотный объект, а внешние слои газа выбрасываются в пространство со скоростью 5% от скорости света. Но проверить данную теорию нелегко, поскольку в нашей Галактике сверхновые не взрывались с 1680 года. Однако 23 февраля 1987 года астрономам улыбнулась удача: произошел взрыв сверхновой в соседней галактике, спутнике Млечного Пути, — Большом Магеллановом облаке. В этот момент «Хаббл» еще не был запущен, но через 3 года он начал отслеживать процесс и вскоре открыл три кольца, окружающие взорвавшуюся звезду. Центральное видно на месте узкой перемычки у газового облака, имеющего форму песочных часов, а большие кольца — края двух чашеобразных полостей, видимо образованных звездой за несколько десятков тысяч лет до взрыва. В 1994 году «Хаббл» начал замечать яркие пятна, возникающие одно за другим на центральном кольце: это в него врезался выброс сверхновой. Наблюдения за агонией звезды продолжаются.

В отличие от своих более массивных собратьев, звезды типа Солнца умирают более элегантно, сбрасывая свои внешние газовые слои постепенно, без взрыва. Это длится около 10 тыс. лет. Когда горячее центральное ядро звезды обнажается, оно своим излучением ионизует извергнутый газ, заставляя его светиться ярко-зеленым (ионизованный кислород) и красным (ионизованный водород). В результате возникает планетарная туманность. Сегодня их известно около 2 тыс. «Хаббл» показал их необычайно сложные формы в тончайших деталях. В некоторых туманностях наблюдается несколько концентрических кругов, похожих на бычий глаз, что свидетельствует об эпизодическом, а не непрерывном выбросе газа. Причем предполагаемое время между двумя выбросами составляет примерно 500 лет, что слишком долго для динамических пульсаций (при которых звезда сжимается и расширяется в результате противоборства гравитации и газового давления) и слишком быстро для тепловых пульсаций (при которых звезда выходит из равновесного состояния). Истинная же природа наблюдаемых колец остается неясной.

4. Космическое рождение

Установлено, что узкие и быстрые струи газа свидетельствуют о рождении звезды. Формируясь, она может извергнуть две тонкие струи длиной в несколько световых лет. Согласно одной из гипотез, крупномасштабное магнитное поле пронизывает газопылевой диск, окружающий молодую звезду. Ионизованное вещество, вынужденное течь вдоль магнитных силовых линий, напоминает бусины на вращающейся нитке. Наблюдения «Хаббла» подтвердили теоретический прогноз, согласно которому струи рождаются в центре диска.

В то же время данные, полученные «Хабблом», опровергли другое предположение, касавшееся околозвездных дисков. Считалось, что они сидят так глубоко в родительском облаке, что увидеть их невозможно. «Хаббл» же обнаружил с дюжину протопланетных дисков — проплидов, часто заметных в виде силуэта на фоне туманности. По крайней мере половина изученных молодых звезд обладает такими дисками, свидетельствующими о том, что сырья для формирования планет в Галактике достаточно.

5. Галактическая археология

Астрономы считают, что крупные галактики, такие как Млечный Путь и наша соседка Туманность Андромеды, выросли, поглощая мелкие галактики. Признаки «галактического каннибализма» должны быть заметны по расположению, возрасту, составу и скоростям входящих в них звезд. Благодаря наблюдениям «Хаббла» за звездным гало (слабым сферическим облаком звезд и звездных скоплений вокруг основного галактического диска) Туманности Андромеды, исследователи обнаружили, что в гало входят различающиеся по возрасту звезды: у самых старых возраст достигает 11-13,5 млрд лет, а у самых юных — 6-8 млрд лет. Последние, должно быть, случайно забрели сюда из какой-то молодой галактики (например, из поглощенной галактики-спутника) или же из более ранней области самой Андромеды (например, из диска, если часть его разрушилась при близком прохождении небольшой галактики или столкновении с ней). В гало нашей галактики нет заметного числа относительно молодых звезд. Так что при всей схожести формы Туманности Андромеды и Млечного Пути, как показывают наблюдения «Хаббла», истории двух галактик значительно отличаются друг от друга.

6. Сверхмассивные черные дыры

С 1960-х годов астрономы получили доказательства того, что источником энергии квазаров и других активных ядер галактик служат гигантские черные дыры, захватывающие окружающее их вещество. Наблюдения «Хаббла» подтверждают данную теорию. Почти у каждой детально наблюдавшейся галактики нашлись указания на спрятанную в ее центре черную дыру. Особенно важными оказались два обстоятельства. Во-первых, изображения квазаров, полученные с высоким угловым разрешением, показали, что они располагаются в ярких эллиптических или взаимодействующих галактиках. Это говорит о том, что нужны особые условия, чтобы питать центральную черную дыру. Во-вторых, масса гигантской черной дыры тесно коррелирует с массой сферического звездного балджа (сгущения), окружающего галактический центр. Корреляция свидетельствует о том, что формирование и эволюция галактики и ее черной дыры тесно связаны.

7. Самые мощные взрывы

Гамма-всплески — короткие вспышки гамма-излучения, длящиеся от нескольких миллисекунд до десятков минут. Их разделяют на два типа в зависимости от их длительности. Границей считаются примерно 2 секунды; в более длительных вспышках образуются менее энергичные фотоны, чем в более коротких. Наблюдения, проведенные Комптоновской гамма-обсерваторией, рентгеновским спутником BeppoSAX и наземными обсерваториями, позволили предположить, что продолжительные вспышки возникают при коллапсе ядер массивных короткоживущих звезд, иными словами, — звезд типа сверхновой. Но почему только малая доля сверхновых дает гамма-всплески?

«Хаббл» обнаружил: несмотря на то, что во всех областях звездообразования в галактиках вспыхивают сверхновые, продолжительные гамма-всплески сконцентрированы в наиболее ярких областях, как раз там, где сосредоточены самые массивные звезды. Более того, продолжительные гамма-всплески чаще всего возникают в небольших, неправильных, бедных тяжелыми элементами галактиках. И это важно, поскольку дефицит тяжелых элементов в массивных звездах делает их звездный ветер менее мощным, чем у звезд, богатых тяжелыми элементами. Поэтому на протяжении жизни бедные тяжелыми элементами звезды сохраняют большую часть своей массы и, когда приходит время взрываться, они оказываются более массивными. Коллапс их ядер приводит к образованию не нейтронной звезды, а черной дыры. Астрономы считают, что продолжительные гамма-всплески вызваны тонкими струями, выброшенными быстро вращающимися черными дырами. Решающими факторами для того, чтобы коллапс ядра звезды вызвал мощный гамма-всплеск, являются масса и скорость вращения звезды в момент ее смерти.

Отождествление коротких гамма-всплесков оказалось более сложным. Только в последние годы несколько таких событий произошло благодаря спутникам HETE 2 и Swift . «Хаббл» и рентгеновская обсерватория «Чандра» установили, что энергия таких вспышек слабее, чем продолжительных, и возникают они в совершенно разных типах галактик, включая и эллиптические галактики, где звезды сейчас почти не формируются. Похоже, что короткие вспышки связаны не с массивными, короткоживущими звездами, а с остатками их эволюции. Согласно наиболее популярной гипотезе, короткие гамма-всплески возникают при слиянии двух нейтронных звезд.

8. Край Вселенной

Одна из фундаментальных задач астрономии — исследовать развитие галактик и их предков во временном интервале, максимально приближенном к моменту Большого взрыва. Чтобы понять, как выглядел когда-то наш Млечный Путь, исследователи решили получить изображения галактик различного возраста — от самых юных до самых старых. С этой целью, чтобы запечатлеть наиболее далекие (а значит, самые древние) галактики, «Хаббл» совместно с другими обсерваториями получил с длительными экспозициями изображения нескольких маленьких участков неба: глубокие снимки «Хаббла», сверхглубокий снимок «Хаббла» и глубокий обзор великих обсерваторий «Происхождение».

Сверхчувствительные снимки показывают галактики во Вселенной, когда ей было лишь несколько сотен миллионов лет, что составляет всего 5% от ее нынешнего возраста. Тогда галактики были меньше размером и имели менее правильную форму, чем теперь, что и следовало ожидать, если современные галактики образовывались путем слияния маленьких галактик (а не путем распада более крупных). Создаваемый сейчас космический телескоп «Джеймс Уэбб», наследник «Хаббла», сможет проникнуть в еще более далекие эпохи.

Глубокие снимки позволяют также проследить, как изменялась интенсивность звездообразования во Вселенной от эпохи к эпохе. Похоже, что она достигла своего пика примерно 7 млрд лет назад, а затем постепенно ослабла примерно в десять раз. В молодости Вселенной (то есть в возрасте 1 млрд лет) скорость звездообразования уже была велика и составляла 1/3 ее максимального значения.

9. Возраст Вселенной

Наблюдения Эдвина Хаббла и его коллег в 1920-е годы показали, что мы живем в расширяющейся Вселенной. Галактики разбегаются друг от друга так, как будто бы пространство Вселенной равномерно растягивается. Постоянная Хаббла (H 0), указывающая современную скорость расширения, позволяет определить возраст Вселенной. Объяснение простое: постоянная Хаббла — это скорость разбегания галактик, поэтому, если пренебречь ускорением и торможением, величина, обратная H 0 , дает время, когда все галактики были рядом. Кроме того, значение постоянной Хаббла играет определяющую роль для роста галактик, формирования легких элементов и установления продолжительности фаз космической эволюции. Не удивительно, что точное измерение постоянной Хаббла было с самого начала основной целью одноименного телескопа.

На практике для определения данной величины требуется измерить расстояния до ближайших галактик, а это гораздо более трудная задача, чем считалось в XX веке. «Хаббл» детально исследовал цефеиды — звезды с характерными пульсациями, периоды которых указывают на их истинный блеск, а значит, и на расстояние до них, — в 31 галактике. Точность полученного значения постоянной Хаббла составила около 10%. В совокупности с результатами измерений реликтового излучения это определяет возраст Вселенной — 13,7 млрд лет.

10. Ускоряющаяся Вселенная

В 1998 году две независимые группы исследователей пришли к поразительному выводу: расширение Вселенной ускоряется. Обычно астрономы считали, что Вселенная тормозится, поскольку притяжение галактик друг к другу должно замедлять их разбегание. Сложнейшая загадка современной физики — вопрос о том, что вызывает ускорение. Согласно рабочей гипотезе, во Вселенной содержится невидимая составляющая, называемая «темной энергией». Совокупность наблюдений «Хаббла», наземных телескопов и измерений реликтового излучения указывают, что в этой темной энергии содержится 3/4 полной плотности энергии Вселенной.

Ускоренное расширение началось примерно 5 млрд лет назад, а до того момента оно тормозилось. В 2004 году «Хаббл» обнаружил 16 далеких сверхновых, которые тогда вспыхнули. Данные наблюдения накладывают основательные ограничения на теории о том, чем может быть темная энергия. Простейшая (и наиболее загадочная) возможность заключается в том, что энергия принадлежит самому пространству, даже если оно совершенно пустое. Сегодня наблюдение далеких сверхновых остается лучшим методом изучения темной энергии. Роль «Хаббла» в изучении темной энергии огромна, поэтому астрономы будут благодарны NASA , если телескоп будет сохранен.

Статьи об открытиях «Хаббла» в Scientific American :
1. Comet Shoemaker-Levy 9 Meets Jupiter. David H. Levy, Eugene M. Shoemaker and Carolyn S. Shoemaker. August 1995.
2. Searching for Shadows of Other Earths. Laurance R. Doyle, Hans-Jörg Deeg and Timothy M. Brown. September 2000.
3. The Extraordinary Deaths of Ordinary Stars. Bruce Balick and Adam Frank. July 2004 (Необычная смерть обычных звезд // ВМН, № 9, 2004).
4. Fountains of Youth: Early Days in the Life of a Star. Thomas P. Ray. August 2000.
6. The Galactic Odd Couple. Kimberly Weaver. July 2003 (Странная галактическая чета // ВМН, № 10, 2003).
7. The Brightest Explosions in the Universe. Neil Gehrels, Luigi Piro and Peter J. T. Leonard. December 2002 (Ярчайшие взрывы во Вселенной // ВМН, № 4, 2003).
8. Galaxies in the Young Universe. F. Duccio Macchetto and Mark Dickinson. May 1997.
9. The Expansion Rate and Size of the Universe. Wendy L. Freedman. November 1992.
10. From Slowdown to Speedup. Adam G. Riess and Michael S. Turner. February 2004 (От замедления к ускорению // ВМН, № 5, 2004).

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!